
-

 ואיך לזהות אותן MachO-מיטיגציות ב

 צלוליכין אדי מאת

 יה בקבצים בינאריים?מיטיגצ היא מה

. באגים קיימים - בזיכרון מסוכנות פעולות לעשות פשרתהמא Level Low תכנות בשפת כתובהה תוכנה בכל

ת אלו בעת שהתוכנה רצה בזיכרון, להשתלט על זרימת בחולשו ולהשתמש למצוא יודעים חולשות חוקרי

ם וע"י כך אף להשתלט על השרת או המחשב עליו תוכנה זו משלה קוד להרצת לגרום בכדיהקוד הטבעית

 .רצה

, Phrack1 במגזין AlpehOneע"י לראשונה תועדה Stack Overflow,, ביותר סמתרוהמפ הזכרון חולשת

 המודעות ועליית המאמר פרסום מאז ”Smashing the Stack for Fun and Profit”.:המפורסם במאמר

 מערכות מפתחי החלו, יום כל משתמשים אנו שבהן בתוכנות חבויות יושבות אשר הזיכרון לחולשות

 לחולשה זיכרון בניהול באג הפיכת על ולהקשות להתמודד דרכים או - מיטיגציות לפתח והמהדרים ההפעלה

 חולשות, מודרניות הפעלה במערכות כיום לנו שיש המיטיגציות בזכות. תוקף של קוד להרצת לגרום שיכולה

 אנשים ידי על מחקרי וזמן כסף הרבה עולות כןלו) נדירות יחסית הינן מרחוק קוד הרצת מאפשרות אשר

 את אסקור בהמשך. (תוכנה הנדסת של סוג שזה כמו בדיוק אומנות שזו, בתחום זה מומחים אשר

 מבחינת בעולם המובילה הינה אפל של והתוכנה החומרה שכן, Apple של במכשירים שקיימות המיטיגציות

 .2011,ת חולשו ניצול נגד מיטיגציות

 שידע בכדי, עליו משפיעות מיטיגציות איזו לזהות עליו, כלשהי קוד פיסת לתקוף רוצה חולשות חוקר כאשר

 הינו שימוש בו עושה חולשות חוקר שכל ביותר המפורסמים הכלים אחד. לחפש צריך הוא מעקף דרכי איזה

5Checksec, כלי source open מערכות ההפעלה המבוססות של בינארים קבצים לפרסר יודע אשרLinux

 .הבינארי בתוך המסתתרות החולשות את לנצל בכדי צריך שהוא המידע את לחוקר ולספק

, Apple של המיטיגציות את לזהות יודע אשר Checksec-ל בדומה כלי קיים לא כי גיליתי שלי מהמחקר כחלק

 הפעלה מבוססות שקיימות המשמעותיות ההקשחות רוב על אפרט הגיליון בהמשך .21,22 אחד כתבתי ולכן

 .visionOS-ו wearOS ,iPadOS ,macOS,iOS כמו XNU במערכות

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 2 2026 פברואר ,182 גליון

 מיטיגציות סוגי

 וברמת(, ASLR) ההפעלה מערכת ברמת(, כנריות) המהדר ברמת: 8מיטיגציות של סוגים שלושה ישנן

 .אותה לזהות ואיך, עובדת היא איך, מיטיגציה כל על נרחיב מכאן ועד סוף המאמר(. PAC) החומרה

 כנריות

 ?כנריות הן מה

 stackחולשת להשמיש תוקף על להקשות במטרה באה אשר המהדר ברמת מיטיגציה היא כנריות

smashing ה על להשתלט בכדי-flow בתיכון שעברתם בלימהאס שיעור את לכם אזכיר כעת. התוכנה של

 :מחסנית הלן. לעובדת המיטיגציה כיצד להמחיש בכדי

 stackמתקפות .address return-ה :לשכתב רוצה היה מאוד התוקף אשר מידע סוג ישנו המחסנית בתוך

smashing כתובת הינו המדובר הערך. אותם שכתבול המחסנית בתוך ערכים לדרוס לתוקף ותמאפשר

. לשלנו שקראה לפונקציה החזרה כתובת זו שכן, רצה שכרגע לפונקציה קראה אשר הפונקציה של הזכרון

 .שירצה פעולה כל לבצע לתוכנה להגיד יכול הוא, המחסנית של הזה לחלק לכתוב מצליח והתוקף בהינתן

-ה לפני canary שנקרא ערך שיש לב ה, תוכלו לשיםבטבל היטב תסתכלו אם. שלנו הפתרון הינן כנריות

ret .מה. השתנה לא הכנרית של שהערך תבדוק ראשית התוכנה, הזכרון לכתובת קופצת שהתוכנה לפני

 read-only הינו אשר בזכרון מיוחד במקום יושבת הכנרית? הכנרית של הערך את לשכתב מהתוקף מונע

 מאחר דיו בכדי לנחשו. ארוך אשר כלשהו מספרי ערך פשוט הינה הכנרית ,להרצה הרצה בין ומשתנה

 ההגנה יעילה. - התוכנה של לקריסה יגרום נכון לא וניחוש

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 3 2026 פברואר ,182 גליון

 :הכנרית בגלל כשל אך stack overflow בה להשמיש ניסה, תוקף אשר מחסנית נראת ךכ

 ?כנריות מזהים איך

 :ראשונה השיט

 :הבאה הקוד פיסת את למשל נקח בואו

include <stdio.h>

int main()
{
 char buffer[20];
 fgets(buffer,sizeof(buffer)-1,stdin); printf("\% s", buffer);
 return 0;
}

. לכנריות איזכור שום ללא. פלט מדפיסה רק conditionals ללא, פשוטה יחסית תוכנה, רואים שאתם כפי

 מזריק בעצם הוא, שלנו הבינארי הקובץ את מיצר המהדר כאשר. האסמבלי ברמת שם עדיין הן אך

 . IDAPro-ה בבתוכנזאת לראות ניתן. הזאת מהמיטיגציה כחלק שלנו לבינארי קוד קטעי ועוד פונקציות

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 4 2026 פברואר ,182 גליון

 :התוכנה של דיקומפילציה להלן

 :חדשה פונקציה ונוספה. בדיקות הזאת התוכנה לזרימת נוספו פתאום, לראות שניתן כפי

 stack_chk_fail

 .שבמחסנית מהערך קוד להריץ קופצת שהתוכנה לפני תקינה הכנרית אם בודקת אשר הפונקציה בעצם זו

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 5 2026 פברואר ,182 גליון

 :זיהוי שיטות

 סמלים חיפוש: 1 שיטה

 (,stripped ינאריהב) קיימות לא הפונקציות שמות אם .הסמלים בטבלת stack_chk_fail הפונקציה חיפוש

 .2 בשיטה להשתמש ניתן

 אסמבלי דפוסי זיהוי :2 שיטה

 :הכנרית את שמזיזות ייחודיות אסמבלי פקודות חיפוש

 x86_64 :פקודת mov עם gs:[0x28] או gs:[0x14]

 ARM64 :פקודת ldr/ldur 0 הרגיסטר עםx18 או tpidr_el

 ARM32 :פקודת ldr עם stack_chk_guard

 :ייחודית לפקודה דוגמה

mov rax , QWORD PTR gs:0 x28

 שבו (Thread Local Storage-ה) TLS-ל כמצביע משמש x18 שהאוגר קונבנציה קיימת ARM64 במעבדי

 ARM64-ב שיש משום אפשרית זו קונבנציה (.לתהליכון ספציפיים אחרים ערכים בין) הכנרית נשמרת

. TLS עבור אחד רגיסטר להקדיש ניתן ולכן (,x86-64-ב 11 לעומת) כללי לשימוש גיסטריםר שלושים

 .tpidr_el0 נקרא המיוחד הרגיסטר

 של בבינאריים כנריות של מדויק לזיהוי הללו השיטות שלושת כל את משלבmachsec [21] כליה: הערה

.macOS/iOS

PIE

PIE המלא בשמה או Position-Independent Executables כתובות את מרנדמת אשר מיטיגציה הינה

 משום לתוקף יותר קשים חיים לעשות במטרה באה המיטיגציה. הבינארי בתוך הפונקציות של הזכרון

 משפיעה ככה. לקפוץ מעוניין הוא אליה הפונקציה של הזכרון כתובת את להדליף צריך הוא שכעת

 :הבינארי של הזכרון כתובות על המיטיגציה

https://docs.google.com/document/d/16fPNf6m9fO-MahHcg0dGEqaQggukCbim/edit#heading=h.dbgg5mcgdvh5

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 6 2026 פברואר ,182 גליון

 להשמיש בשביל, כעת. הנכונה הכתובת את לנחש קשה מאוד ולכן, להרצה הרצה בין משתנה האופסט

 .זיכרון דליפת של פרימיטיב, שלב עוד צריך תוקף חולשה

 PIE זיהוי

 הבינארי של הכותרות 3,4Mach-O הבינארי קובץ של(headers) הכותרות ניתוח באמצעות מתבצע PIE זיהוי

 :כמו דברים כוללת דאטה-המטא. הבינארי על דאטה-מטא בעצם הן

 הבינארי סוג (ELF/Mach-O)

 הבינארי ארכיטקטורת (ARM/x86)

 מופעלות הגנות אילו (NX או PIE)

 :כך נראה Mach-O של הכותרת מבנה. הבינארי על רב מידע להשיג יכולים אנו, הכותרות ניתוח ידי על רק

 :מרכזי מידע

 :הקובץ סוג את מזהים הראשונים הבתים

 0xfeedface (Mach-O 32-bit)

 0xfeedfacf (Mach-O 64-bit)

 0xcafebabe (fat binary) - למשל(ארכיטקטורות מספר המכיל בינארי x86_64 ו(ARM64- בקובץ

 תוכל תוכנה שאותה כדיSilicon ,Apple-ל -Intelמ המעבר בגלל Apple אצל במיוחד נפוץ זה .אחד

 .המעבדים סוגי שני על לרוץ

 (bit = 28 bytes, 64-bit = 32 bytes-32):הכותרת מבנה

struct mach_header_64 {
 uint32_t magic; // 0x00: Magic number
 uint32_t cputype; // 0x04: CPU architecture
 uint32_t cpusubtype; // 0x08: CPU variant
 uint32_t filetype; // 0x0C: Executable , library , etc.
 uint32_t ncmds; // 0x10: Number of load commands
 uint32_t sizeofcmds; // 0x14: Size of load commands
 uint32_t flags; // 0x18: FLAGS INCLUDING MH_PIE!
 uint32_t reserved; // 0x1C: (64-bit only)
};

 ביט כאשר 0x00200000. הוא ערכו .0x18 (offset) בתזוזה flags בשדה ממוקם MH_PIE הדגל: PIE זיהוי

 .Position-Independent Execution ךתומ שהבינארי מציין הוא, מופעל זה

 :הזיהוי תהליך

 .Mach-O כותרת של flags-ה בשדה MH_PIE דגל בדיקת ידי על מתבצע הזיהוי

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 7 2026 פברואר ,182 גליון

No eXecute (NX)

 NX?מהו

NX (אוNo Execute)אם אפילו, כלומר ".להרצה ניתנים לא"-כ מסוימים זיכרון אזורי שמסמנת הגנה היא

 של שלם סוג חוסם זה. אותו להריץ יסרב המעבד -heap,ל או stack-ל מזיק קוד להזריק מצליח תוקף

 .אליו קופץ ואז לזיכרון shellcode מכניס תוקף שבהן התקפות

(memory page) זיכרון דף כל של ההרצה הרשאות את בודק המעבד - החומרה ברמת פועלת ההגנה

 .ממנו קוד מריץ שהוא לפני

 ?NXם איך מזהי

כלא ניתן להרצה, מודרניות, הליבה תמפה את המחסנית של התהליכון XNUבמערכות הפעלה מבוססות

לא מופעל היא לבדוק האם בזמן הרצה יש משהו אשר NXכברירת מחדל. לכן, הדרך היחידה לדעת אם

 .executable-הופך את המחסנית ל

RPATH

 RPATH?מהו

RPATH - הם נתיבים שמוגדרים בבינארי ומציינים היכן מאוחסנות ספריות שהתוכנית צריכה לטעון בזמן

 -(. הבעיה היא שאם הנתיבים האלה מצביעים למקומות שבהם תוקף יכול לכתוב קבצים runtimeריצה)

התוקף יכול להחליף את הספריות -למשל אותה תיקייה של הבינארי, או תיקיות משותפות בין משתמשים

האמיתיות בספריות זדוניות ולהשתלט על הריצה של התוכנית. זו פרצת אבטחה חמורה כי היא מאפשרת

Code Execution .על ידי החלפת ספריות לגיטימיות בגרסאות מזויפות

 RPATH?-בעיות ב מזהים איך

 :לחיפוש בבינארי הטעינה פקודות של סריקה ידי על מתבצע הזיהוי

 פקודות LC_RPATH - מוגדרים חיפוש נתיבי

 מחרוזת @rpath פקודות בתוך LC_LOAD_DYLIB

 :Mach-O למבנה דוגמה

Load Commands:
LC_RPATH: /usr/local/lib ← RPATH
LC_LOAD_DYLIB: @rpath/lib.dylib ← @rpath
LC_LOAD_DYLIB: /usr/lib/libc.dylib ← @rpath

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 8 2026 פברואר ,182 גליון

 :מסוכן זה למה

 :מכיל שהבינארי נניח

 libs LC_RPATH/(:תיקייה באותה יחסי תיבנ)

 LC_LOAD_DYLIB: @rpath/important.dylib

 במקום אוטומטית אותו יטען והבינארי, תיקייה באותה זדוני libs/important.dylib ליצור יכול תוקף

 .האמיתית הספרייה

FORTIFY

 ? FORTIFYמהו

FORTIFY להן שיש יותר בטוחות בגרסאות לזיכרון מסוכנות פונקציות שמחליף קומפילציה דגל הוא

, GNU compiler ידי על ונוצרה הקומפיילר ברמת פועלת המיטיגציה (.checking bounds) גבולות בדיקות

 Clang. ידי על אומצה יותר ומאוחר

 זו. ועוד ,()memcpy() ,memmove() ,strcpy כמו פונקציות הן בהן מטפלת שהיא העיקריות הפונקציות

 .אותה להכיר חשוב עדיין אבל, יחסית חלשה מיטיגציה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 9 2026 פברואר ,182 גליון

 FORTIFY?מזהים איך

 שונה נראה assembly-ה ברמת שהקוד שאומר מה, עובדות הפונקציות שבו האופן את משנה המיטיגציה

 .הזו המיטיגציה בלי שקומפל מבינארי

 בתמונה הבאה: לראות שניתן כפי

 memcpy הפונקציה למעשה. ()memcpy_chk כעת נקראות memcpy כמו לזיכרון בטוחות לא פונקציות

 נוכל, האלה(symbols) הסמלים את נחפש פשוט אם .יותר מאובטחת בגרסה linking-ה ברמת הוחלפה

 .המיטיגציה את לזהות

 :הזיהוי תהליך

 כגון מוגנות פונקציות שמות לחיפוש הבינארי של table symbol-ה סריקת י"ע מתבצע הזיהוי

memcpy_chk ,strcpy_chk ,sprintf_chk .הפעלת על תעיד ונקציותפ של נוכחות.FORTIFY_SOURCE

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 10 2026 פברואר ,182 גליון

 Appleמנגנוני זיכרון מותאמים אישית של

kalloc_type ו- xzone malloc

 הגנה המספקים אישית מותאמים זיכרון הקצאת מנגנוני פיתחה Apple, הסטנדרטיות למיטיגציות בנוסף

-ו iOS) 15-ב הושק, הקרנל ברמת) kalloc_type הם העיקריים המנגנונים. זיכרון פגיעויות נגד מתקדמת

malloc xzone)17-ב הושק, המשתמש ברמת iOS.)

 הבעיה עם מנגנוני הקצאה מסורתיים:

 נמצאות בתים 16 בגודל ההקצאות כל - בלבד גודל לפי הזיכרון את מארגנים מסורתיים הקצאה מנגנוני

 groomingלבצע לתוקפים מאפשר ל"הנ(, ’וכו socket ,pipe ,port מכילות הן למה קשר ללא) אזור באותו

heap - שיוקצה במה לשלוט כדי בהם שולט שהוא באובייקטים הזיכרון את ממלא התוקף שבה טכניקה

 .משחרר שהוא אובייקט של במקום

 :סוג לפי הקצאה - הפתרון

kalloc_type משלו ייעודי זיכרון אזור מקבל סוג כל. גודל לפי ולא האובייקט סוג לפי הזיכרון את מארגן ,

 :לדוגמה. אחרים לסוגים זהה הגודל אם גם

 ה כל-sockets אחד באזור

 ה כל-pipes נפרד באזור

 ה כל-ports נפרד באזור

 של מקומו את לתפוס יכול לא אחד מסוג אובייקט - משמעותית לקשה הופך grooming heap: התוצאה

 .אחר מסוג אובייקט

 :ההגנה מנגנון

 אם גם, לצמיתות לו שמור שנשאר וירטואליות כתובות טווח מקבל אזור כל :קבוע וירטואלי בידוד

 אחר סוג של לשימוש יעברו לא לעולם הכתובות. התרוקן הפיזי הזיכרון

 מפני הגנה :UAF פגיעות, הבידוד בגלל Use-After-Free יוחלף משוחרר אובייקט - לניצול ניתנות לא

 הסוג מאותו באובייקט רק

 אקראי באופן מפוזרות ההקצאות, אזור כל בתוך :רנדומיזציה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 11 2026 פברואר ,182 גליון

 :SockPuppet של המקרה - במציאות בדיקה

17SockPuppet ידי הינו אקספלויט שפותח על Ned Williamson מ-Google Project Zero .ה מנצלת החולש

בכדי לבצע Type Confusionומשרשרת את הפגיעות יחד עם Use-After-Freeפרימיטיב ראשוני של

Privilege Escalation ל של קרנהחולשה התגלתה בXNU ב 2111-ב-Subsystem שאחראי על Sockets.

Apple אם קורה היה מה רטרואקטיבית בדקה kalloc_type הניצול: התוצאה. הפגיעות בזמן קיים היה

 כי, המשוחרר socket-ה מקום את לתפוס שונה לאובייקט לגרום יכול לא התוקף - לחלוטין נכשל היה

 .נפרדים זיכרון באזורי הם

 סיכום היתרונות:

 על משמעותית מקשה heap grooming - משוחרר אובייקט יחליף מה לשלוט יכול לא כמעט תוקף

 התקפות יעילות את משמעותית מפחית Use-After-Free ו-Confusion Type

 בקוד שינויים ללא אוטומטית עובד

 לניצול קשות יותר להרבה רבות קיימות פגיעויות הופך

 :ראו נוסף למידע

https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/

UBSAN (Undefined Behavior Sanitizer)

 ?UBSAN מהו

UBSAN ל בדומה, לתוכנית בדיקות שמוסיפה הקומפיילר ברמת מיטיגציה היא-Canaries Stack ו-

.FORTIFY מוגדרות לא התנהגויות לתפוס היא המטרה (behavior (undefined כמו, ריצה בזמן:

 Integer overflow/underflow - שלמים מספרים של גלישה

 סימן של באגים (signedness bugs) - חתומים לא/חתומים מספרים עם בעיות

 לגבולות מחוץ למערכים גישה

 מאותחל לא במשתנה שימוש

 מסוכנות סוגים המרות

 את לעצור ויכול זה את מזהה UBSAN, מוגדרת לא להתנהגות שנחשב משהו עושה שהקוד פעם כל

 .אזהרה להדפיס או התוכנית

https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 12 2026 פברואר ,182 גליון

 ?UBSAN מזהים איך

 ,הסמלים בטבלת האלה הסמלים את נחפש אם. לקוד בדיקה פונקציות מוסיף FORTIFY-,UBSANל בדומה

 :מופעל UBSAN אם לדעת נוכל

 או -ubsanב שמתחילים סמלים כמו, בקוד מופיעות חדשות בדיקה פונקציות, לראות שניתן כפי

_ubsan_handle.

 :הזיהוי תהליך

 או, ubsan ,sanitizer המכילות פונקציות לחיפוש הסמלים טבלת סריקת ידי על מתבצע הזיהוי

_ubsan_handle. הפעלת על מעידה אלו סמלים של נוכחות .UBSAN

(ASAN (Address Sanitizer

 ASAN? הומ

ASAN (Sanitizer Address) עם יחד בעיקר שמשמשת הקומפיילר ברמת מיטיגציה היא fuzzers (כלי

 :בזיהוי מתמחה המיטיגציה. ריצה בזמן זיכרון פגיעויות לזהות כדי (אוטומטיים בדיקה

 Out-of-Bounds המערך לגבולות מחוץ גישה - כתיבה/קריאה

 Use-After-Free - משוחרר בזיכרון שימוש

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 13 2026 פברואר ,182 גליון

 Double-Free - זיכרון אותו של כפול שחרור

 Memory leaks - זיכרון דליפות

 Stack Overflow/Heap - דינמי זיכרון/מחסנית גלישת

ASAN זאת עם. לתוכנית ופונקציות בדיקות מוסיפה היא - הקודמות למיטיגציות דומה בצורה עובדת ,

 ASAN, זה בגלל. גדל הבינארי של והגודל, משמעותית יורדים התוכנית של הביצועים: גבוה הוא המחיר

 .סופיות בגרסאות ולא, ובדיקות פיתוח בזמן רק כלל בדרך משמשת

 ?ASAN מזהים איך

 .הסמלים בטבלת ספציפיים סמלים חיפוש - -FORTIFYו UBSAN כמו בדיוק עובד הזיהוי

 ,asan_load ,asan_store כמו, לקוד מתוספות ASAN פונקציות של רב מספר, לראות שניתן כפי

interceptor_malloc__ ,וכו'

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 14 2026 פברואר ,182 גליון

 :הזיהוי תהליך

 , asan__המכילים פונקציות שמות לחיפוש הסמלים טבלת סריקת - -UBSANל זהה הזיהוי

__interceptor_malloc ,או .sanitizer_cov

 :-ASANב להשתמש מתי

 .בביצועים קשה פגיעה בגלל בייצור לא אך - ובבדיקות, fuzzing עם, פיתוח בזמן

CFI (Control Flow Integrity)

 CFI?הומ

CFI (Integrity Flow Control) הנכונה הביצוע זרימת אחר עוקבת שהתוכנית לוודא שמנסה מיטיגציה היא

 למנוע היא המטרה .canaries stack-ו UBSAN ,ASAN כמו למיטיגציות בדומה, לקוד בדיקות הוספת ידי על

 :כמו, התוכנית של הביצוע זרימת את לשנות שמנסות התקפות

 Return-Oriented Programming (ROP)- שימוש חוזר בקוד קיים

 Jump-Oriented Programming (JOP)- קפיצות לקוד קיים

 של שינוי Pointers Function - פונקציות מצביעי החלפת

 גודל את משמעותית מגדילה היא - התוכנתיות המיטיגציות מכל ביותר היקרה המיטיגציה זו :לציין חשוב

 .עצומה ביצועים פגיעה לה ויש הבינארי

 -macOS/iOS:ל רלוונטיות

CFI במערכות עובד לא XNU עם בינארי לקמפל תנסו אם גם !מודרניות CFI במערכות macOS/iOS

 PAC (Codes Authentication Pointer.)-ב אוטומטית תוחלף המיטיגציה, מודרניות

PAC של חומרתי יישום הוא Control Flow Integrity במעבדי ישירות שמובנה Apple Silicon ו-ARM64 .

 CFI לכן(. המאמר בהמשך בפירוט -PACב נדון) התוכנתי -CFIמ ומתקדם, מהיר, יעיל יותר הרבה הוא

 .PAC-ב שמשתמשות מודרניות Apple למערכות ולאbinaries ,Linux/ELF-ל בעיקר רלוונטי

 ?CFI מזהים איך

 כמו בדיוק עובד הזיהוי, מודרניות macOS/iOS במערכות -PACב מוחלפת שהמיטיגציה למרות

 .הסמלים בטבלת ספציפיים סמלים חיפוש - הקודמות המיטיגציות

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 15 2026 פברואר ,182 גליון

 :הזיהוי תהליך

 .cfi_check או _cfi ,_cfi המכילים סמלים חיפוש - הקודמות למיטיגציות זהה הזיהוי

 היא ,מודרניים macOS/iOS-ב עובדת לא אך, ביותר היקרה התוכנתית המיטיגציה היא CFI :סיכום

 .יותר מתקדם חומרתי יישום ,PAC-ב אוטומטית מוחלפת

 (Symbol Stripping) סמלים הסרת

 ?סמלים הסרת מהי

 כאשר Engineers Reverse על שמקשה מידע הסרת אלא, הקלאסי במובן מיטיגציה אינה סמלים הסרת

 רק - בפונקציה להשתמש כדי השם את צריך באמת לא הקומפיילר, בקוד לפונקציה שם נותנים אתם

 - הפונקציות לשמות מאוד זקוקים, זאת לעומת, האדם בני אנחנו .נמצאת הפונקציה שבה זיכרון כתובת

 .הקוד כל את לקרוא מבלי, ראשון במבט עושה הפונקציה מה להבין לנו עוזרים הם

 שמות את יקבל לא Engineer Reverse-ש כדי (stripped) שלהן הסמלים את יוציאו התוכניות רוב

 שבו קומפילציה-הדה בכלי תלויים השמות(func_1234)(כמו תמוהים שמות עם וישאר, הפונקציות

 .)משתמשים

 ?סמלים הסרת מזהים איך

. קיים לאש משהו מחפשים אנחנו כאן, בבינארי קייםש משהו חיפשנו שבהן האחרות מהמיטיגציות בשונה

 .דאטה-והמטא הכותרות קריאת ידי על בבינארי יש סמלים כמה בודקים אנחנו

 :הזיהוי תהליך

 מוגדרים ולא ,(external) חיצוניים ,(local) מקומיים: הסמלים סוגי ספירת ידי על מתבצע הזיהוי

.(undefined) נקבע זה לפי :Not stripped (הסמלים כל,) Partially stripped (חיצוניים רק)אוFully

Stripped (סמלים אין)

 :חשוב זה למה

 כמו פונקציות שמות במקום - Engineering Reverse עליו לבצע קשה יותר הרבה סמלים ללא בינארי

)(authenticate_user תראו sub_401234() ,של העבודה את משמעותית מאט זה Reverse Engineers

 .ותוקפים ושל

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 16 2026 פברואר ,182 גליון

Heap Cookies

 Heap Cookies?מהם

Cookies Heap כמו רעיון אותו בדיוק הם Canaries Stack ,ה על פועלים שהם רקheap- ה על םבמקו-

Stack .גלישת התרחה שלא בודקים הם Dynamically Allocated Memory Heap Chunks Blocks .

 .דינמי באופן שמוקצים נתונים מבני של השחתה מפני ומגנים

 הבלוק ליד(cookie) בדיקה ערך מוסיפה המערכת ,’וכו malloc ,calloc, עם -heapה על זיכרון כשמקצים

 הוא אם. השתנה לא -cookieשה בודקת המערכת, בו משתמשים או הזיכרון את ששוחררים לפני. המוקצה

 .נעצרת והתוכנית, זיכרון גלישת שהתרחשה אומר זה - השתנה

 :Cookies Heap של ויזואליזציה

 -cookieה ,buffer גלישת לאחר - ימין בצד. ותקף שמור -cookieה שבו תקין מצב - שמאל בצד :הסבר

 .התוכנית את ולעצור התקיפה את לזהות למערכת שמאפשר מה, ונשתנה נדרס

 Heap Cookies?מזהים איך

כמו heap,מתבצע על ידי בדיקת סמלים בבינארי שקשורים להקשחת Heap Cookiesזיהוי

guard_malloc ,_malloc_check ו- .malloc_zone

 :הזיהוי תהליך

 ,malloc_zone ,guard_malloc כגון heap להקשחת הקשורות פונקציות לחיפוש הסמלים טבלת סריקת

._malloc_check

 .מופעלת המיטיגציה heap, הקשחת של אחד סמל אפילו נמצא אם :התוצאה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 17 2026 פברואר ,182 גליון

 Stack Canaries:-מ הבדלים

 Stack Canaries ה על מגנים-Stack ,ש בעוד-Heap Cookies ה על מגנים-Heap.

 Stack Canaries הפונקציה בסוף בודקים - Heap Cookies זיכרון שחרור בעת בודקים

 קבוע להישאר שאמור בדיקה ערך: הגיון באותה משתמשים שניהם

 (:Integer Overflow) הגנה מפני גלישת מספרים שלמים

 ?Integer Overflow מפני הגנה מהי

 פונקציות מוסיפים אנו שבה Instrumentation, מבוססת הגנה עוד היא שלמים מספרים גלישת מפני הגנה

 (.Wrapped Around) שלהם מהגבולות חרגו לא שלמים שמספרים לוודא כדי לתוכנית בדיקה

 :לדוגמה. ביטים של קבוע במספר מיוצגים שלמים מספרים, במחשב

 uint8_t - 8 של גודל הינוbits (1-222: טווח)

 int32_t - 32 של גודל הינbits (2,147,483,647 עד 2,147,483,648--מ טווח)

 :לדוגמה. חזרה” עוטף” הוא, שלו מהטווח לחרוג למספר גורם חישוב כאשר

 :כדי זאת לנצל יכולים תוקפים

 גודל בדיקות לעקוף buffer

 נכונות לא זיכרון להקצאות לגרום

 בלוגיקה צפויים לא תנאים ליצור

 ?שלמים מספרים גלישת מפני הגנה מזהים איך

 או ubsan_handle_add_overflow _,addoti4 ,_muloti4_כגון פונקציות לחיפוש הסמלים טבלת סריקת

_wrap.

 :מחפשים אנו שאחריהן הפונקציות

 muloti4 - בכפל גלישה בדיקת

 addoti4 - בחיבור גלישה בדיקת

 ubsan_handle_add_overflow ב מטפלoverflow- של UBSan

 wrap__ - עטיפה פונקציות (wrapper)חישובים לבדיקת

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 18 2026 פברואר ,182 גליון

Sandbox ייחודי ל(-XNU)

 Sandbox?מהו

 ההפעלה למערכת מוגבלת גישה יש לבינארי שבה מוגבלת סביבה יצירת הוא Sandbox, כללי באופן

 :דברים מספר עושה זו הגנה, ומיטיגציות XNU של במקרה .הבסיסית

 דומה מערכת קריאות סינון(ל-seccomp)בשם ליבה תכונת באמצעות בלינוקס seatbelt

 הרשאות בדיקת (entitlements)- וכו, חומרה סוג לאיזה, אליו לגשת לבינארי מותר מה’

 פרופיל החלת Sandbox - שמסוננות המערכת וקריאות ההרשאות בסיס על

 Sandbox?מזהים איך

 גם שזה) חתום הבינארי אם בדיקה ידי על, הקיימים הסמלים באמצעות Sandbox לזהות יכולים אנו

 .להרשאות הקשורות מחרוזות של בדיקה ידי על וגם (,Sandbox-ב שהבינארי חזק אינדיקטור

 :שלבים בשלושה מתבצע הזיהוי

 סמלי חיפוש Sandbox - עבור סריקה sandbox, _Container_ וכו'

 בדיקת Entitlements - חיפוש com.apple.security.app-sandbox הקוד בחתימת

 נוכחות - קוד חתימת בדיקת LC_CODE_SIGNATURE

Hardened Runtime + SIP + AMFI (ל ייחודי-XNU)

 -iOS.ל רק ייחודיות וחלקן -macOS,ל ייחודית, והבינארי ההפעלה מערכת ברמת הגנות חבילת זוהי

 Hardened Runtime?מהו

Runtime Hardened תוקפניות טכניקות נגד ריצה בזמן תהליכים להקשיח שנועדה הגנות סוויטת הוא

 .קוד חתימת דרך שמופעלת התהליך ברמת הגנה זוהי .13נפוצות

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 19 2026 פברואר ,182 גליון

 :ההגנה רכיבי

 CS_RESTRICT - כותרת Mach-O הבינארי של דאטה-המטא של הקוד חתימת ממדור חלק, בבינארי .

 להם יש אם אלא, דיבאגר ידי על לחיבור ניתנת ללא התוכנית את הופך ובכך ()task_for_pid, חוסם

 הנכונות ההרשאות את

 cs_kill - תואמות אינן החתימות ריצה בזמן נקודה בכל אם התהליך את הורגת הליבה

 ספריות אימות Validation) (Library - שונו ולא חתומים הבינאריים שכל בודק

 הגבלת JIT (Just-In-Time)- קומפילציית JIT שזה, והרצה לכתיבה ניתן שיהיה זיכרון אזור דורשת

 אם אלא, execute וגם write גם שהוא זיכרון אזור של ()mmap תאפשר לא הזו ההגנה. אבטחה סיכון

 com.apple.security.cs.allow-jit:ספציפית הרשאה מוגדרת

 חוסם - דיבאג חסימת ptrace() ספציפית הרשאה יש אם אלא :com.apple.security.get-task-allow

 ? Entitlementsמהם

Entitlements הקשחה אשר קיימת ב הינם עוד-XNU. הרעיון הוא להגביל את ההרשאות שיש לתהליכון

 .כלשהו, כך שהיה לו גישה לדברים שהוא צריך באמת

)למשל, למחשבון לא צריכה להיות גישה למצלמת הרשת(. כך שגם אם ובהינתן יש לכם הרצת קוד על

 ולהריץ קוד משלכם (sandbox escape) המחשבון של אפל עדיין נדרש איכשהו לצאת מהתהליכון

(unsigned code execution) .ה-entitlements מובנים לתוך הקובץ, ולא ניתן לגעת בהם בגלל שכל

נגיעה בהם תשנה את החתימה של הקובץ, וקובץ לא חתום לא ירוץ על מערכת ההפעלה. נדבר על

 .plistשנקרא xml-הינה פשוט קובץ בפורמט שדומה ל המיטגציה .חתימות יותר לעומק בעמודים הבאים

 לתוך התהליך. embeddedהקובץ הינו

 SIP (System Integrity Protection)?מהו

SIP תוכנות בפני עמידות תוך לפעול ממשיכה ההפעלה שמערכת שמבטיחה, אלה הגנות של סוויטה הוא

 לו אמר מישהו כי שלו הקבצים מערכת כל את בטעות שמוחק טיפש ומשתמש, חולשות ניצול, זדוניות

 :להריץ

rf -rm /

 :הפקודה דרך -macOSב SIP את להשבית ניתן

csrutil disable

 עם תוכנית של דינמית אינסטרומנטציה כמו התקפית אבטחה של סוג כל לעשות רוצים אם חובה וזה

FRIDA, וכו, מותאמות רישיון אימות ספריות עם פרוצה תוכנית הרצת’.

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 20 2026 פברואר ,182 גליון

 הצפנת בינאריים

(Apple Mobile File Integrity) AMFI ב הקיימת נוספת הגנה היא-XNU ,9,12-ב במיוחדiOS מורכבת ההגנה

 :יחד שפועלים רכיבים משני

 (System Daemon) amfid

 ליבה למודו AppleMobileFileIntegrity.kext))

 :הבאות הפונקציות את מבצעים אלה שני, יחד

 :מוצפנים בינאריים פענוח

 עםMach-O -ה כותרת. כראוי לרוץ כדי הסגמנט את לפענח צריכים, מוצפן TEXT סגמנט בעלי בינאריים

LC_ENCRYPTION_INFO עם טעינה פקודת מכילה:

cryptid=1 // encrypted
cryptoff // offset to encrypted data
cryptsize // size of encrypted region

 .’וכו Provisioning, פרופילי, אישורים שרשראות מאמת amfid, החתימה אימות את מבצעת הליבה כאשר

 -Hardened Runtimeו AMFI זיהוי

 שכל להניח בטוח אבל machsec, של לתחום מחוץ הוא ההפעלה מערכת ברמת מופעל SIP אם זיהוי

 .מחדל כברירת מופעל זה עם תהיה XNU מבוססת הפעלה מערכת

 .בבינארי זאת לבדוק נוכל בהחלט אז, מופעל Runtime Hardened יהיה הבינאריים לכל לא, זאת עם

 :הבאות הפקודות חיפוש ידי על מתבצע הזיהוי

 LC_CODE_SIGNATURE - קוד חתימת (macOS)

 LC_ENCRYPTION_INFO / LC_ENCRYPTION_INFO_64 - הצפנה (iOS)

 (Code Signing) חתימת קוד

 ?קוד חתימת מהי

 דיגיטלית חתימה לקבל יכולים ידועים חברות/ארגונים ידי על המופצים בינאריים -Windows,ל בדומה

 פיסת אם, התוכנה מספק אמיתי עותק היא תוכנה פיסת אם לדעת Apple למכשיר שעוזרת -Apple,מ

 ’וכו, שינוי עברה התוכנה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 21 2026 פברואר ,182 גליון

 ?עובדת קוד חתימת איך

 כמו דאטה-מטא המכיל מבנה) CodeDirectory ויש, הבינארי בסוף חתימה blob מצרפת קוד חתימת

 ים-hash-ה עם (להרצה הניתן קוד של KB4 של עמוד לכל אחד SHA256, ים-hash-ה של ומערך דגלים

 . -TEXTה סגמנט לתוך שייטען עמוד כל של מראש מחושבים

 להרצה ניתן לעמוד ניגשים כאשר - page faults דרך עצלן באופן עמודים מאמתת הליבה, ריצה בזמן

, תואמים לא ים-hash-ה אם -CodeDirectory.ה מול ומשווה שלו hash עושה הליבה, הראשונה בפעם

 .נהרג התהליך

 :לב שימו

 :חתומים אינם הבאים הדברים. חתום)להרצה ניתן קוד(-TEXTה סגמנט רק

 Stack

 Heap

 _DATA (לכתיבה הניתנים נתונים)

 DATA_CONST_ (מסוימים במקרים חתום להיות עשוי)

 LINKEDIT__

 דינמי באופן שהוקצה זיכרון

 קוד חתימת זיהוי

 LC_CODE_SIGNATURE פקודת חיפוש ידי על מתבצע הזיהוי :הבינארי כותרות את לנתח כמו פשוט זה

 .הבינארי בכותרת

(PAC (Pointer Authentication Codes (ייחודי ל-ARM)

 PAC? הומ

PAC או Pointer Authentication Codes חומרת על רק הזמינה ייחודית הגנה היא ARM 16,11.

 ובכך, קריפטוגרפי באופן (החזרה וכתובותpointers function) זרימה בקרת מצביעי שחותמת הגנה זוהי

 .מאוד לקשה הבקרה זרימת חטיפת את הופכת

 זוהי, התוכנית של הבקרה זרימת את לחטוף רוצות זיכרון שחיתות התקפות רוב, דבר של שבסופו מאחר

 -Appleש מה בדיוק שהן ARM, מבוססות פלטפורמות על לנו הזמינות ביותר החזקות ההגנות אחת

 ם שלה.הניידי מחשביםגם ה, ולאחרונה ,שלה הטלפונים עבור משתמשת

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 22 2026 פברואר ,182 גליון

 ?עובד PAC איך

PAC הבאים האלמנטים הוספת ידי על עובד:

 ל אישית מותאמות הוראות-Assembly ARMהמצביע אימות את שמבצעות

 התאמות ברמת ה- Microprocessor Circuitryהקריפטוגרפיים בחישובים לסייע כדי במעבד

 ביצועים על נטל להיות לא האבטחה לתכונתגורם לך . לעבוד PAC-ל הנדרשים

 ביט 121 בגודל הוא רגיסטר כל. מפתחות מאוחסנים שבהם, למעבד אישית מותאמים רגיסטרים

 משתמש לקוד נגיש ואינו

 באלגוריתם משתמש - אישית מותאמת הצפנה hash בשם חדש APLPAC להיות במיוחד ןשתוכנ

 .מהיר

PAC מצביע כתובות של בשימוש הלא הביטים ניצול ידי על עובד (ב48-63 הביטים-ARM64) .מחשב אף

 :כזה משהו נראים מצביעים, מחדל כברירת אז. זיכרון של exabytes 11 או 216 באמת לו אין

0x00000002fa89efa8

 כך, קטנה חתימה להכניס כדי בזה שימוש עושה PAC. שימוש ללא שנשארים אפסים הרבה יש שבו

 :כך להיראות עשוי חתום שמצביע

0xA123A312fa89efa8

 :המצביע מבנה של ויזואליזציה

 החתימה חישוב

 :הבאה המשוואה באמצעות מחושב -hashה

truncate(APLPAC_encrypt(key, pointer, context))

 :כאשר

 truncate - אנחנו אז, לנו שיש המעטים הביטים לתוך התוצאה כל את להכניס יכולים לא אנחנו

 הזמינים הביטים 26 או 11-ל קוטעים

 APLPAC (Apple PAC) - ה אלגוריתם-hash של המותאם ,ARM לכיוונון הניתן בלוק צופן אלגוריתם

tweakable block cipher) .)לכאורה מבוסס על PRICE.

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 23 2026 פברואר ,182 גליון

 key - הליבה ידי על רק מוגדר להיות שיכול ברגיסטרים היושב סודי מפתח

 context - למרות שיש עוד המחסנית מצביע של נוכחי ערך(בד"כContext-)הרעיון הוא שהיה , ים

בהקשר של מסגרת המחסנית שבה הוא שוכן. הנ"ל מונע לעשות ניתן לקרוא למצביע הפונקציה רק

שימוש חוזר במצביע חתום ממקום אחר בתוכנית. המצביע החתום לא יעבוד מחוץ למסגרת

 המחסנית הנכונה, החתימה המחושבת לא תתאים, והתהליך יקרוס.

 PAC: של זרימה תרשים

 יכולים נתונים מצביעי. פונקציות ומצביעי החזרה כתובות, הוראות מצביעי בעיקר חותם PAC :לציין חשוב

, C (arithmetic,pointer ,casts שפת אילוצי ידי על מוגבל זה אך, מהיישומים בחלק PAC עם להיחתם

pointer-to-integer מפרט שבו האופן בגלל, הצער למרבה('וכו C כל את לחתום אפשר אי, מוגדר

 .לחלוטין הכל לשבור מבלי המצביעים

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 24 2026 פברואר ,182 גליון

 PAC זיהוי

 :(bin/ls/) בתוכנית נראה PAC איך של תמונה להלן

 :כמו ומגניבות חדשות ARM הוראות מקבלים אנחנו, לראות יכולים שאתם כפי

 PACZIA - 1” של הקשר עם מצביע חתום”

 AUTIBSP - מפתח באמצעות מצביע אמת B

 לטיפול עודכן לא -disassemblerה אם או. החדשות ההוראות את לזהות צריך רק הזיהוי מנגנון אז

 .לסמלים לחזור פשוט יכולים אנחנו, הללו החדשות בהוראות

 :בדיקת ידי על מתבצע הזיהוי

 להיות חייב - המעבד סוג ARM64

 עבור בדיקה - המעבד סוג-תת CPU_SUBTYPE_ARM64E

 ה דגל-ABI PtrAuth הבינארי בכותרת

 .בבינארי PAC סמלי ובדיקת ספציפיות ARM64 הוראות חיפוש באמצעות PAC מזהה machsec12 כליה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 25 2026 פברואר ,182 גליון

MTE/EMTE (Memory Tagging Extension) - (ייחודי ל-ARM)

 MTE/EMTE/MIE?מהו

Memory Tagging Extension או MTE ש לגמרי חדשה הגנה היא- Apple/ARMעל להגן כדי פיתחו

 כל של בכתובת בשימוש לא ביטים שיש בעיקרון משתמשים שניהם. 14,15,19יכול לא -PACש המצביעים

 .הדמיון נגמרות שם אבל, לנצל יכולים שאנחנו מצביע

 המדויק המינוח .ומעלה +M3-וב (iPhone 15 Pro) ומעלה A17 Pro בשבבים רק כרגע זמין MTE :זמינות

 Integrity Extension-ו. (Memory MIE או (EMTE Enhanced MTE שלה היישום את מכנה Apple: משתנה

 .בתיעוד שונים במקומות

 ?עובד MTE איך

. לתגים ייעודי זיכרון באזור נשמר וגם למצביע גם מתווסף RNG חומרה ממחולל ביטים 6 בן אקראי תג

MTE שנקרא נפרד זיכרון באזור משתמש Memory Tag - חצי) ביטים 6 יש, רגיל זיכרון של בתים 11 לכל-

 מצביע כאשר. הקצאה כל עבור תגים לשמור ומאפשר החומרה ידי על מנוהל זה זיכרון .זיכרון תג של (בית

 לא הם אם - התגים בזיכרון לתג במצביע התג את אוטומטית משווה החומרה ,(dereferenced) משוחזר

. UAF (Use-After-Free)באג יעצור MTE לאיך מעשית דוגמה ניתן בואו. מיידית נכשלת הגישה, תואמים

 :שלנו הקוד קטע הנה

char *ptr = malloc(64); // alloc chunk on heap size 64
ptr[0] = 'A'; // set value
free(ptr); // mark chunk as empty
ptr[0] = 'B'; // UAF bug!

 MTE: תהליך של ויזואליזציה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 26 2026 פברואר ,182 גליון

 :מפורט זרימה תרשים

 :MTE-ל ARM64 הוראות

MTE ל חדשות הוראות מוסיף:ARM64-

 IRG - פעולת Insert Random Tag ,אקראי תג יצירת

 STG - פעולת Store Allocation Tag ,הקצאה תג שמירת

 ST2G - פעולת Store Allication Tags (Double) - (כפול) הקצאה תגי שמירת

 STZG - פעולת Store Allocation Tag and Zero - ואיפוס הקצאה תג שמירת

 STZ2G - פעולת Store Allocation Tags and Zero (Double) - (כפול) ואיפוס הקצאה תגי שמירת

 LTG - פעולת Load Allication Tag - הקצאה תג טעינת

 LDG - פעולת Load Allocation Tag - הקצאה תג טעינת

 ADDG - פעולת Add with Tag - תג עם חיבור

 SUBG - פעולת Subtract with Tag - תג עם חיסור

 GMI - פעולת Tag Mask Insert - מסכה הכנסת

 SUBP / SUBPS - פעולת Subtract Pointer - מצביע חיסור (עם משמש MTE)

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 27 2026 פברואר ,182 גליון

 MTE זיהוי

 18.1-מ JavaScriptCore מנוע את לחלץ צורך היה. חדשה הגנה שזו מכיוון, מחקר עבודת דרש MTE זיהוי

iOS על ה-iPhone היחידים שקומפלו עם ההגנה הזו כרגע.החדש מכיוון שזה בין הדברים

 irg, כגון ספציפיות MTE הוראות לחיפוש ARM64 בינארי של -disassemblyה סריקת ידי על מתבצע הזיהוי

,stg ,st2g ,ldg ,addg ,subg ו.gmi- ב שימוש על מעידה אלו הוראות של נוכחות.MTE- הדרך היא זו שיטה

 .לחומרה וספציפיות חדשות הללו שההוראות מכיוון, במהימנות MTE לזהות היחידה

ARC (Automatic Reference Counting) (רלוונטי ל-Objective-C/Swift)

 ARC?מהו

ARC או Automatic Reference Couting ,בשפות זמינה הגנה הוא Swift / Objective-C ספירת שמבצעת

 מאחר Swift,-ו Objective-C-ב Use-After-Free באגי על להקשות מנת על (Counting Reference) הפניות

 -heap.ב מאוחסנים יוצר שאתה גבוהה ברמה הנתונים והמבני האובייקטים שכל

 ?עובד ARC איך

ARC אובייקט לכל ההפניות מספר אחרי עוקב:

 עולה המונה, לאובייקט חדשה הפניה נוצרת כאשר

 מ יוצאת הפניה כאשר,scope- יורד המונה

 אוטומטית משוחרר האובייקט, לאפס מגיע המונה כאשר

 .ריצה בזמן רקע תהליך דורש ולא קומפילציה בזמן עובד ARC ,מלא Collection Garbage-מ שונה הנ"ל

 :דוגמה

// Objective-C with ARC
MyObject *obj = [[MyObject alloc] init]; // refcount = 1
MyObject *obj2 = obj; // refcount = 2
obj = nil; // refcount = 1
obj2 = nil; // refcount = 0, object
 ' → freed

 ARC זיהוי

 :Objective-C של אופייניות זיכרון ניהול פונקציות חיפוש ידי על ARC לזהות ניתן

 objc_retain - הפניות מונה הגדלת

 objc_release - הפניות מונה הקטנת

 objc_autorelease - דחוי אוטומטי שחרור

 objc_retainAutorelease - אוטומטי ושחרור שמירה

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 28 2026 פברואר ,182 גליון

 - objc_storeStrong חזרה שמירה עם אחסון

 objc_loadWeakRetained - חלשה שמירה עם טעינה

 .ARC-ב שימוש על מעידה בבינארי אלה פונקציות של נוכחות

 סיכום

 כל איך ראינו XNU מבוססות הפעלה במערכות שקיימות העיקריות המיטיגציות את סקרנו זה במסמך

 machsec. הכלי באמצעות בבינאריים אותה לזהות ניתן ואיך, חשובה היא למה, עובדת הגנה

 :שסקרנו העיקריות המיטיגציות

 מאגר גלישת מפני המחסנית על הגנה - כנריות

 PIE - קוד מיקומי אקראיות

 NX - להרצה ניתנים כלא זיכרון אזורי סימון

 RPATH/RUNPATH - בטוחים לא ספריות נתיבי זיהוי

 FORTIFY - מאובטחות בגרסאות בטוחות לא פונקציות החלפת

 UBSAN/ASAN - באגים לזיהוי אבחון כלי

 CFI - בקרה זרימת שלמות

 מידע הסרת ידי על הקשחה - סמלים הסרת

 Heap Cookies הערימה על הגנה

 באגי מניעת - שלמים מספרים גלישת הגנת Overflow Integer

 Sandbox - תהליכים בידוד

 Hardened Runtime/SIP/AMFI - חבילת הגנות ברמת מערכת

 בינאריים של אותנטיות אימות - קוד חתימת

 PAC - מצביעים של קריפטוגרפי אימות (ל ייחודי-ARM)

 MTE/EMTE - באגים לזיהוי זיכרון תיוג (ל ייחודי-ARM)

 ARC (Objective-C/Swift) - אוטומטי זיכרון לניהו

 בזכות במיוחד, כיום בשוק ביותר המתקדמת ההגנה רמת את מציעות Apple של ההפעלה מערכות

 הבנת Silicon .Apple של ARM במעבדי המובנות -MTEו PAC כמו ייחודיות חומרה הגנות של השילוב

 .אלה בפלטפורמות העוסק אבטחה חוקר לכל חיונית הללו ההגנות

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 29 2026 פברואר ,182 גליון

 על המחבר

 וחקר הגנתי במחקר עוסק 1211, יחידת בוגר, שנים שש כמעט כבר בתחום נמצא .21 בן, צלוליכין אדי

 לינקדאיןב קשר איתי ליצור ניתן. חולשות

 מקורות מידע

1. Phrack. “Smashing the Stack for Fun and Profit”. In: Phrack Magazine 7.49 .(1996) Article ,14

by Aleph One. http://phrack.org/issues/49/14.html

2. M. Abadi et al. “Control-flow integrity”. In: Proceedings of the 12th ACM conference on

Computer and communications security. ACM. ,2005 pp. -340.353

3. Singh. Mac OS X Internals: A Systems Approach. Addison-Wesley Professional,.2006

4. OS X ABI Mach-O File Format Reference. Apple Inc. .2009

https://github.com/aidansteele/osx-abi-macho-file-format-reference

5. T. K. Shawn et al.checksec.sh - Bash script to check security properties. Open Source Tool.

2009, https://github.com/slimm609/checksec.sh

6. Francillon, D. Perito, and C. Castelluccia. “Return-oriented programming without returns on

ARM”. In: Black Hat USA. 2010

7. R. Roemer et al. “Return-oriented programming: Systems, languages, and appli-cations”. In:

ACM Transactions on Information and System Security (TISSEC). Vol. .15 .1 ACM, .2012

8. L. Szekeres et al. “SoK: Eternal War in Memory”. In: 2013 IEEE Symposium on Security and

Privacy. IEEE. ,2013 pp. -48.62

9. J. Levin. Apple Mobile File Integrity. *OS Internals, Volume I: User Mode. .2016

10. Q. S. Advisory. The Stack Clash. .2017 https://www.qualys.com/2017/06/19/stack-

clash/stack-clash.txt

11. Q. T. Inc. “ARMv8.3 Pointer Authentication”. In: ARM Architecture Reference Man-ual

ARMv8. ARM Limited, 2017

https://developer.arm.com/documentation/102433/0100/Pointer-authentication

12. J. Levin. *OS Internals, Volume III: Security & Insecurity. Technologeeks.com,.2017

13. Hardened Runtime. Tech. rep. Apple Inc. 2018,

https://developer.apple.com/documentation/security/hardened_runtime

14. ARM Memory Tagging Extension. ARM Limited .2019,

https://developer.arm.com/documentation/102925/0100/

https://www.linkedin.com/in/eddy-tsalolikhin-090082249/
http://phrack.org/issues/49/14.html
https://github.com/aidansteele/osx-abi-macho-file-format-reference
https://github.com/slimm609/checksec.sh
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt
https://developer.arm.com/documentation/102433/0100/Pointer-authentication
https://developer.apple.com/documentation/security/hardened_runtime
https://developer.arm.com/documentation/102925/0100/

 לזהות אותן ואיך MachO-מיטיגציות ב
www.DigitalWhisper.co.il

 30 2026 פברואר ,182 גליון

15. Armv8.5-A Memory Tagging Extension. ARM Limited .2019,

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-

blog/posts/enhancing-memory-safety

16. H. Liljestrand et al. “PAC it up: Towards pointer integrity using ARM pointer au-

thentication”. In: 28th USENIX Security Symposium .2019

17. N. Williamson. SockPuppet: A Walkthrough of a Kernel Exploit for iOS 12.4. Google Project

Zero Blog. 2019, https://googleprojectzero.blogspot.com/2019/12/sockpuppet-

walkthrough-of-kernel.html

18. Towards the next generation of XNU memory safety: kalloc_type. Tech. rep. Apple Inc.

2021, https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-

safety/

19. Apple Silicon Security. Apple Inc. 2023, https://support.apple.com/guide/security/apple-

silicon-security-sec87716a080/web

20. Apple Platform Security. Apple Inc.2024, https://support.apple.com/

guide/security/welcome/web

21. gracecondition. machsec - Security mitigation detection tool for Mach-O binaries. Open

Source Tool. 2024, https://github.com/gracecondition/machsec

22. gracecondition. machsec Documentation - XNU Security Mitigations. Personal Blog. 2126,

https://gracecondition.github.io/posts/machsec-documentation/

23. https://i.blackhat.com/BH-US-23/Presentations/US-23-Zec-Apple-PAC-Four-Years-Later.pdf

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhancing-memory-safety
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://googleprojectzero.blogspot.com/2019/12/sockpuppet-walkthrough-of-kernel.html
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://support.apple.com/guide/security/apple-silicon-security-sec87716a080/web
https://support.apple.com/guide/security/apple-silicon-security-sec87716a080/web
https://support.apple.com/%20guide/security/welcome/web
https://support.apple.com/%20guide/security/welcome/web
https://github.com/gracecondition/machsec
https://gracecondition.github.io/posts/machsec-documentation/
https://i.blackhat.com/BH-US-23/Presentations/US-23-Zec-Apple-PAC-Four-Years-Later.pdf

